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Figure 1: (a)(b) Existing approaches primarily focus on single-modality generation on its own space, leading to inefficiencies
and misalignment in multimodal sensor data. (c) Our OmniGen, a unified multimodal sensor generation framework. (d) Tra-
ditional VAE, which only supports images. () Our UAE, a unified multimodal autoencoder, leverages the unified BEV latent.
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Abstract

Autonomous driving has seen remarkable advancements, largely
driven by extensive real-world data collection. However, acquir-
ing diverse and corner-case data remains costly and inefficient.
Generative models have emerged as a promising solution by syn-
thesizing realistic sensor data. However, existing approaches pri-
marily focus on single-modality generation, leading to inefficien-
cies and misalignment in multimodal sensor data. To address these
challenges, we propose OmniGen, which generates aligned mul-
timodal sensor data in a unified framework. Our approach lever-
ages a shared Bird’s Eye View (BEV) space to unify multimodal
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features and designs a novel generalizable multimodal reconstruc-
tion method, UAE, to jointly decode LiDAR and multi-view camera
data. UAE achieves multimodal sensor decoding through volume
rendering, enabling accurate and flexible reconstruction. Further-
more, we incorporate a Diffusion Transformer (DiT) with a Con-
trolNet branch to enable controllable multimodal sensor genera-
tion. Our comprehensive experiments demonstrate that OmniGen
achieves desired performances in unified multimodal sensor data
generation with multimodal consistency and flexible sensor adjust-
ments.
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1 Introduction

Autonomous driving has made remarkable progress in recent years,
driven by large-scale real-world data collected from diverse envi-
ronments. However, the high cost and inefficiency of acquiring
real-world data, especially in corner-case scenarios, limit the scal-
ability of this process. Meanwhile, generative models [2, 37, 62]
have gained significant attention for their ability to learn data dis-
tributions and synthesize realistic content, achieving remarkable
success in image generation. Consequently, using generative mod-
els to synthesize desired sensors has become a de-facto standard
in autonomous driving to address the data scarcity issue. For cam-
era data generation, researchers directly fine-tune existing image
generation models, such as ControlNet [62], with specific driving
scene layouts or textual descriptions as conditions to generate scene
images. Moreover, beyond cameras, LIDAR sensors play a crucial
role in practical autonomous driving systems for accurate percep-
tion and planning, providing reliable 3D environmental measure-
ments by capturing point clouds. For LiDAR data generation, to
leverage existing image generation models, researchers first con-
vert point clouds into range-view pseudo images and then adapt
the whole image generation pipeline, i.e., the autoencoder and dif-
fusion model, to range-view space to generate pseudo LiDAR im-
ages, which are subsequently converted back into LiDAR points.
However, as illustrated in Fig. 1, existing driving scene genera-
tion models primarily focus on single-modality sensor data, while
the unified generation of multimodal data remains unexplored. Uni-
fied multimodal sensor generation offers several advantages: Im-
proved efficiency — generating both modalities simultaneously
eliminates the need for separate pipelines (e.g., the data processing,
model training, and model updates). Better sensor alignment —
Independently generating sensor data is difficult to align across dif-
ferent sensors, making it challenging for downstream multimodal
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models to utilize effectively. Nevertheless, achieving a unified mul-
timodal generation poses significant challenges. Camera genera-
tion models operate in the image latent space, where conditions
are projected into the perspective image view, while LiDAR gen-
eration models generate data in the range-view latent space with
conditions projected accordingly. Fusing these distinct generation
spaces into a unified representation, while ensuring it is control-
lable under a unified condition, is a non-trivial problem.

In this paper, we introduce OmniGen, a unified multimodal sen-
sor generation framework for autonomous driving. We address
the challenges of unified sensor generation by breaking the prob-
lem down into several key steps: 1) Establishing a unified rep-
resentation space: Inspired by prior multimodal perception re-
search [24, 29], such as BEVFusion [25], we unify multimodal fea-
tures in a shared Bird’s Eye View (BEV) space, which provides a
global scene context and aligns well with conditions such as tex-
tual descriptions or road sketches. 2) Decoding multimodal sen-
sor data from the unified BEV space: Drawing inspiration from
generalizable NeRF approaches, e.g., PixelNeRF [61], we leverage
volume rendering to render sensor data. While previous generaliz-
able NeRF methods primarily focus on object-level reconstruction
and single-modality image rendering, their application to large-
scale and multimodal autonomous driving scenes remains limited.
Thanks to the unified BEV representation, in this work, we intro-
duce UAE, the first generalizable LIDAR-camera multimodal recon-
struction method for autonomous driving scenes. To decode mul-
timodal data, UAE first upsamples the BEV features into 3D voxel
features and then renders sensor features by sampling the voxel
features. Subsequently, a carefully designed feature decoder is in-
corporated to map the rendered features to the corresponding sen-
sor data, preserving and enhancing high-frequency details for im-
proving reconstruction quality. Compared to traditional VAEs [20],
UAE naturally offers multiple benefits from its generalizable recon-
struction capability. For instance, autonomous driving scenes typi-
cally involve multiple surrounding images. Previous works process
each view independently using VAEs and apply attention modules
as soft constraints to enforce cross-view consistency. In contrast,
UAE inherently supports multi-view consistent rendering by lever-
aging unified BEV features as a global scene constraint. Similarly,
multimodal sensor data rendered from the shared BEV features
also maintains consistency across different modalities. Moreover,
UAE allows for the adjustment of sensor parameters (both intrinsic
and extrinsic) during the decoding process. This enables effortless
camera control, which previously required complex designs and
training of generation models to achieve [27, 59]. 3) Generating
latent BEV features for multimodal sensor data: To enable
generative models to produce multimodal sensor data, we enhance
UAE with a Vector Quantization (VQ) module, and leverage it as
our multimodal autoencoder for unified generation. For the gener-
ative model, we employ the ControlNet-Transformer architecture,
which incorporates ControlNet into the powerful Diffusion Trans-
former (DiT) model. Moreover, we employ comprehensive scene
conditions, i.e, scene textual descriptions, BEV road sketches, and
3D boxes, enabling more fine-grained and precise control of the
generative model to generate the desired latent BEV features ef-
fectively. Overall, we achieve an end-to-end unified multimodal
sensor generation framework. Given driving scene conditions, our
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OmniGen can generate aligned multimodal sensor data. Moreover,
we explore various multimodal architecture designs and provide
valuable investigations into unified multimodal generation.
Through comprehensive experiments, we validate the effective-
ness of our approach in generating multimodal sensor data within
a unified framework. Specifically, our UAE module achieves state-
of-the-art performance over previous generalizable reconstruction,
and our OmniGen achieves comparable results with previous spe-
cialized single-modality methods and effectively generates multi-
modal data with cross-modality alignment and flexible sensor con-
trol, further enhancing downstream autonomous driving tasks.
Overall, our contributions are summarized as follows:

« We introduce OmniGen, a unified multimodal sensor gener-
ation framework that enables the controllable generation of
aligned LiDAR and multi-view camera data.

« We propose UAE, a generalizable multimodal reconstruc-
tion method, which serves as an efficient multimodal au-
toencoder for encoding and decoding multimodal data in
a unified space while allowing multimodal and multi-view
consistency and flexible sensor adjustments.

« We demonstrate the effectiveness of our method quantita-
tively and qualitatively through extensive experiments con-
ducted on multiple scenes.

2 Related Work

2.1 Camera Generation Models

Recent advancements in generative models, particularly in diffu-
sion models [14, 62], have inspired the generation of high-fidelity
and controllable driving scenes. Previous works [8, 11, 12, 19, 30,
31,33, 48, 49, 51] have fine-tuned image generation models on driv-
ing data, incorporating various control signals such as maps, ob-
ject bounding boxes, and textual descriptions to generate diverse
driving scenarios. Specifically, BEVGen [42] first introduces the
use of a BEV map as a condition for generating multi-view street
images. BEVControl [57] further proposes a two-stage generation
pipeline that integrates cross-view attention. MagicDrive [9] high-
lights 3D geometric information, encoding boxes and road maps
separately to enable more fine-grained control. DriveDreamer [47]
and DriveDreamer-2 [64] generate multi-view video data based on
diverse control signals. Recently, researchers have been further re-
fining driving image generation. For example, some works [21, 22,
54], e.g., InfiniCube [32], adopt semantic occupancy as an inter-
mediate representation to improve generation quality. Others [10,
32, 67] incorporate additional reconstruction modules to synthe-
size 4D driving scenes. Moreover, some studies [27, 59] integrate
camera pose parameters into the generator to achieve more pre-
cise control. In this work, beyond scene images, we aim to jointly
generate multimodal sensor data within a unified framework.

2.2 LiDAR Generation Models

Generative models also provide a promising alternative for creat-
ing realistic LiIDAR point clouds without physics-based platforms.
Early approaches, such as LIDARVAE and LiDARGAN [3], employ
VAE or GAN s for LiDAR cloud generation, but the realism achieved
in their results is relatively limited. Following, UltraLiDAR [53]
utilizes VQ-VAE [44] to generate voxelized LiDAR point clouds,
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while LidarDM [69] employs a map-conditioned diffusion model
to generate scene meshes, which are then raycast to produce Li-
DAR scans. Meanwhile, with the advanced diffusion models, many
works explore LIDAR generation based on range-view image rep-
resentations. LIDARGen [68] firstly applies a diffusion model on
range-view images, leveraging progress in image diffusion models.
R2DM [35] designs a more mature diffusion framework, achiev-
ing significant performance improvements. RangeLDM [15] fur-
ther optimizes efficiency and quality by compressing range-view
data into a latent space before diffusion. More recently, LIDM [40]
and Text2LiDAR [50] explore conditional LiDAR generation using
conditions such as text, bounding boxes, and maps. Despite these
advancements, state-of-the-art LIDAR generation methods operate
in range-view space, which is challenging to unify with the image
space used for camera sensor generation. In this work, we address
this issue by unifying multimodal features within a shared BEV
space, enabling unified multimodal sensor generation.

2.3 Generalizable NeRFs

Latent diffusion models fundamentally operate in the latent space
of autoencoders. However, commonly used autoencoders, such as
VAE [20] and VQ-VAE [44], do not inherently support multimodal
sensor data. On the other hand, generalizable NeRFs [5, 26, 61, 63]
replace the costly per-scene optimization with a single feedfor-
ward pass. These models take several images as input and gener-
ate corresponding image outputs, effectively functioning as a more
versatile autoencoder. While previous generalizable NeRF meth-
ods have primarily focused on object-level reconstruction, only
DistilINeRF [45] recently explored generalizable scene reconstruc-
tion for driving scenes. However, it relies on multiple complex
modules, such as distillation from offline NeRFs, distillation from
foundation models, hierarchical octree representation, and integra-
tion of depth features from DepthAnything [58], and it remains
limited to image rendering. A unified and end-to-end multimodal
generalizable NeRF—or a multimodal autoencoder—remains unex-
plored. In this work, we introduce UAE, a generalizable multimodal
reconstruction method for driving scenes. Furthermore, we enhance
UAE with a Vector Quantization (VQ) module and leverage it as a
multimodal autoencoder for unified sensor data generation.

3 OmniGen

In this section, we introduce OmniGen in detail. We first give an
overview in Section 3.1. Then, we introduce the UAE in Section 3.2
and unified LIDAR-Camera generation in Section 3.3.

3.1 Overview

As illustrated in Fig. 2, our OmniGen consists of a multimodal au-
toencoder and a multimodal generator. The multimodal autoen-
coder, UAE, first encodes the camera and LiDAR sensor data into a
unified BEV space, then decodes the unified BEV features to multi-
modal sensor data by volume rendering. The multimodal generator
adopts ControlNet-Transformer architecture, which incorporates
ControlNet into the Diffusion Transformer (DiT) model, enabling
fine-grained and precise control. Given textual descriptions, BEV
road sketches, and 3D boxes as scene conditions input, the gener-
ator generates the desired latent BEV features effectively.
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Unified MultiModal Autoencoder (UAE)
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Figure 2: Our OmniGen framework consists of two main components: the unified multimodal autoencoder and the unified
multimodal generator. The UAE is composed of three parts: a multimodal BEV encoder, a Vector Quantization module, and
a multimodal rendering decoder. The unified multimodal generator includes two branches: the base branch and the control
branch, which take multiple scene conditions as input to generate BEV latent representations.

3.2 Unified Multimodal Autoencoder

As commonly used autoencoders, e.g., VAE [20] and VQ-VAE [44],
do not support multimodal sensor data, we propose a novel unified
multimodal autoencoder based on volume rendering and dub it as
UAE. The UAE contains three parts: a multimodal BEV encoder, a
multimodal rendering decoder, and a Vector Quantization module.

Multimodal BEV Encoder. The multimodal BEV encoder con-
verts different modalities into a unified BEV space while preserv-
ing as much sensor-specific information as possible. Specifically,
following prior works [23, 25], for multi-view images from the
camera sensors, we adopt the Lift-Splat-Shoot (LSS) view trans-
formation [38] to lift 2D features into the 3D volume features, de-
noted as Vo € RXY*2XC_ For the LiDAR sensor, the point encoder
firstly learns a parameterized voxelization [66] of the raw point
clouds and then utilizes sparse 3D convolution networks [55] for
efficient feature extraction. We follow UVTR [23] to directly retain
the height dimension in the point encoder to obtain LiDAR 3D vol-
ume features, V; € RXY*2*C Then, V- and V| are summed and
passed through a projection layer to enhance the fused voxel repre-
sentation, forming the unified voxel space Vi; € RXY*2*C Finally,
we adopt the Spatial-to-Channel (S2C) operation [52] to reshape
Vy, into the unified BEV space, By; € RXYX(ZXC) effectively pre-
serving semantic information while reducing computational cost.
To recover the 3D volume features, we apply the inverse Channel-
to-Spatial (C2S) reshaping to the BEV features. The unified BEV

features serve as the target for the generation model, while the
voxel features act as the input for the rendering decoder.

Multimodal Rendering Decoder. When given the unified volu-
metric features, the multimodal rendering decoder aims to decode
multimodal sensor data, which can be divided into two distinct
components: image reconstruction and LIDAR reconstruction. Prac-
tically, we represent a scene as an implicit signed distance function
(SDF) field from Neus[46] as UniPAD [56] and use differentiable
volume rendering to render multimodal data.

1) For image rendering, we sample camera rays from multi-view
images r(¢) = o + td with the camera center o and viewing direc-
tion d. For each ray r;, we sample N points {p; = (x;, 1, z)}Y,
along the ray. For each sampled point p;, the corresponding fea-
tures v; are obtained from the voxel features Vi; according to its
position by trilinear interpolation. Then, the SDF value s; is pre-
dicted by ¢spr(p;, vi), where ¢spr represents a shallow MLP. Then,
we render the camera feature descriptor by integrating the sam-
pled features along rays:

M=

F. =

1

i—1
WiV, W = H(l —ap), 0 = max<
=1 o, (s1)

1

(1)
where o,(x) = (1 + )71 is a sigmoid function modulated by
a learnable parameter s. After obtaining the 2D feature map F, €

(4 c
RV for each camera, we design a feature decoder to map
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the rendered features to the RGB image I, € RF™""3 with en-
hanced high-frequency details. We employ MSE and LPIPS loss for
rendered image supervision, ie., Lcamera = Lmse + Llpips-

2) For LiDAR rendering, following LiIDAR-NeRF [43], we treat
the oriented LiDAR laser beams as a set of camera rays. Slightly
abusing the notation, let r(¢) = o + td be a ray casted from the Li-
DAR sensor, where o denotes the LiDAR center, and d represents
the normalized direction vector of the corresponding beam. Then,
similar to the camera rendering, we sample the ray points and get
the corresponding features, and render the LiIDAR depth measure-
ment and feature descriptor as:

N N
D=3 witiF1 = ) wvi. @
i=1 i=1

The rendered depth D can convert into LiDAR points as (x, y, z) =
(D cos(a) cos(p), D cos(a) sin(p), D sin(ar)), where « is the vertical
rotation and f is the horizontal rotation of viewing direction d.
The rendered LiDAR feature map is also decoded through a feature

decoder to the view-dependent features of LiDAR, I; € ]RHIXWIXZ,
including the intensities and ray-drop probabilities. We employ L1
loss for depth optimization and MSE loss for intensities and ray-
drop supervision, L1ipaR = Ldepth + £i + £r-

Compared to traditional VAEs [20], the rendering decoder nat-
urally offers multiple benefits from its generalizable reconstruc-
tion capability. For instance, autonomous driving scenes typically
involve multiple surround-view images. Previous works process
each view independently using VAEs and apply attention mod-
ules as soft constraints to encourage cross-view consistency. How-
ever, this approach failed to maintain strict geometric consistency
across different views. In contrast, the rendering decoder inher-
ently supports multi-view consistent rendering by leveraging uni-
fied BEV features as a global scene constraint. Similarly, multi-
modal sensor data rendered from the shared BEV features also
maintains consistency across different modalities. Furthermore, the
rendering decoder allows for flexible adjustment of sensor parame-
ters, i.e., both intrinsic and extrinsic, during the rendering process.
This enables intuitive camera control, which previously required
complex designs and specialized training to achieve [27, 59].

Vector Quantization. To better leverage the diffusion model for
generating BEV features, we further project the unified BEV fea-
tures into a tokenized discrete space as VQ-VAE [44], which con-
sists of three modules: BEV Patch Embedder, Vector Quantization,
and BEV Feature Decoder.

1) BEV Patch Embedder. We firstly patchify the BEV features

By € R¥Y*C into a sequence of BEV patches {Pe ]RPXPXC}?;II,
where P is the patch size, and M = H byb /P? is the patch num-
ber. Then each BEV patch is further embedded to z, € RE, where E
is the embedded dimension. 2) Vector Quantization (VQ). We then
define a discrete latent space {vy,..., Vg, ...,vg} € RE as our
codebook embedding, where K represents the maximum number
of the embeddings. Taking the continuous latent vector z, from the
patch embedder, the VQ module outputs discrete latent vector z
through the nearest neighbor search in the codebook. 3) BEV Fea-
ture Decoder. We finally feed the discrete BEV embeddings {z'd}l]\;[ 1

to our BEV feature decoder by reshaping them into a grid format
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and then reconstructing the original BEV features. Detailed archi-
tecture is present in ?? of the supplementary material.

The overall VQ training loss £,q includes the codebook loss
L ode and the reconstruction loss £.. Due to the non-differentiable
vector quantization operation, the codebook loss is defined as:

M
1 . . 2 . .2
Seote = 57 2 ([~ st + [se) ~ D], ). o)
i=1
where £, means L2 normalization and sg denotes stop-gradient.
We utilize MSE for the reconstruction loss of BEV features, and
the final loss is defined as:

’qu = Lre + Leode- (4)

Overall Optimization. The overall optimization target of our UAE
is formulated as:

*CUAE = 'CCamera + 'CLiDAR + ’qu- (5)
3.3 Unified LiDAR-Camera Generation

Latent BEV Feature DiT. Latent Diffusion Models (LDMs) [41]
perform diffusion process on the latent space, using a pre-trained
VAE to map between the input and the latent space. It iteratively
denoises from a random Gaussian noise z; for R steps with a de-
noiser G¢ into a clean image latent zf). This VAE+diffusion formula-
tion is widely adopted in image generation, and we also adopt this
manner for our unified BEV features generation. As our BEV fea-
tures already leverage vector quantization into discrete space, we
do not need to apply additional VAE mapping. Given scene condi-
tions S, the goal is to generate corresponding BEV features from
latent variables € ~ N (0, 1), i.e, By = G(S, €}. Then the generated
BEV features are decoded to multimodal sensor data through the
multimodal rendering decoder of our UAE. To enhance the qual-
ity of generated BEV features, we adapt the advanced DiT [65] as
our denoiser G and apply a cross-attention mechanism to integrate
scene conditions S, i.e., textual descriptions, road sketches, and 3D
boxes. Denoting z2(e) = \/67,23 +./1 — &€ as noisy latent, where 7
is a timestep, € ~ NV'(0, I) is Gaussian noise, &, is hyper-parameter,
the diffusion process is:

Lo =Ep, s [le - G579 (©)

Specifically, as illustrated in Fig. 2, we incorporate the Control-
Net [62] branch into the DiT model to enable road sketch condi-
tions. Inspired by PixArt-§ [6], we create a trainable copy of the
first 13 blocks of the model. These duplicated blocks are integrated
with the corresponding base blocks through a learnable zero linear
layer. Each duplicated block combines the road sketch features, en-
suring precise control with the provided sketch conditions.

Scene Conditions Encoding. To describe a driving scenario, we
adopt comprehensive scene conditions outlined in [9, 33]. As illus-
trated in Fig. 3, unlike previous approaches that rely on modality-
specific conditions, our method adopts unified conditions to gener-
ate aligned multimodal sensor data. Specifically, scene conditions
S = {M, B, T} include a road sketch M € {0, 1}** representing a
wx h meter road area in BEV with ¢ semantic classes, 3D bounding
boxes B = {(b;, h;, 1;, ¢;)}; where each object is described by a box
b; = {(x]-,yj,zj)}f:1 € R®3, heading h; € [-180, 180)"™", instance
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(a) Image conditions (b) Range-view conditions

The vehicle is traveling th-
rough an urban environm-

ent with construction acti-

vity visible on the left, ......

Sketch 3D box Scene description

(c) Unified conditions (ours)

Figure 3: Previous modality-specific conditions and our uni-
fied conditions.

id1; € [0, l]nXI, and caption ¢; € C, textual descriptions T sum-
marying information for the whole scene (e.g., weather and time
of day). The layout entries, i.e., instance details such as box coordi-
nates, heading, and ID, are encoded by the Fourier Embedder [34],
F, and then are concatenated and processed through an MLP into
a unified embedding. The textual input is encoded into 200 tokens
using the T5 [39] language model, Ers. The road sketches are ex-
tracted latent features by a pre-trained VAE, Eyag. The encoding
of unified scene conditions can be formulated as:

B’ = MLP(F(b) + F(h) + F(1) + Ers(c)),

7

M’ = Eyag(M), T’ = Eqs(T). ()
We incorporate these condition embeddings into the DiT model
through cross-attention mechanisms, facilitating flexible and fine-
grained control:

q=MLP(2’), k = MLP([B’, T’]), v = MLP([B’, T']),

CA(q,k, v) = Soft (q'kT) ®
q,k, v) = Softmax V.
Jd
The road sketches feature is integrated in the duplicated blocks as:
z(b)ut = DiT(zi’n) + Zero(Control(zfn +M)), 9)

where Zero denotes the learnable zero linear layer.

Optimization. With the latest advancement on LDMs [65], we
replace IDDPM [36] with rectified flow [28] for increased stability
and reduced inference steps. Rectified flow defines the forward pro-
cess between data and normal distributions as z2 = (1— T)zg + rzi’,
and the loss function in Eq. (6) is rewritten as:

Lo =Ey o [195G07.9) - (2 - 3] (10)

22878

Moreover, we extend the Classifier-free Guidance (CFG) [13]
strategy from the text condition to 3D boxes and road sketches
to enhance control precision and visual quality. CFG aims to en-
hance the alignment between generated images and specified con-
ditions, which simultaneously performs both conditional and un-
conditional denoising during training and combines the two esti-
mated scores during inference. In practice, we randomly set each
condition to a null ¢ with a 5% probability during training. The
guidance scale Ay, A, A controls the alignment between the sam-
pling results and the conditions. Drawing inspiration from IP2P [1],
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Table 1: Multimodal sensor generation results.

‘ . ‘ Camera Generation
Tokenizer

\ | FID| CLIP? mAP?

Method

Single-Modality

BEVGen [42]
BEVControl [57]
DriveDreamer [47]
DriveDreamer-2 [64]
WoVoGen [31]
MagicDrive [9]
Panacea [49]

VQ-VAE | 2554  71.23 -
VQ-VAE | 2485 8270 19.64
VQ-VAE | 52.60 - -
VQ-VAE | 25.00 - -
VQ-VAE | 27.60 - -
VQ-VAE | 1620 8247 1230
VQ-VAE | 1696  84.23 -
VQ-VAE | 15.80 - 20.66

Drive-WM [48]
MagicDriveDiT [11] VQ-VAE 20.91 - 17.65
OmniGen UAE-C 22.15 82.76 19.57
Unified
OmniGen | UAE-LC | 21.01 8354 2041
Method Tokenizer LiDAR Generation

\ | FRD| MMD| JSD|
Single-Modality
LiDARVAE [3] 2DGrid-VAE | - 11.0 -
LiDARGen [68] N/A - 190 0.160
RangeLDM [15] Range-VAE | 49249  2.75 0.054
LidarDM [69] SDF-VAE - 351 0.118
OmniGen UAE-L 562.89 3.17 0.117
Unified
OmniGen ‘ UAE-LC 519.73 2.94 0.105

MMD has been multiplied by 10%.
"LC” represents the LIDAR and Camera fusion.

we apply the unconditional denoising results to each condition in-
dividually, which can be formulated as:
Go(z2. B,M.T) = G¢(z2. $..9)
+ 2+ (Go(a2. 6.6, T) = Go(ar. 6.4.4))
+ Ayt (Go(zt, ¢ M. T) = Go(z2. 4,4, T))
+Ap - (Go(28, B,M,T) — Gg(25, ¢, M, T)).

4 Experiment

Our experiments are conducted on the popular NuScenes dataset [4].
For additional details, including dataset, metrics, baselines, and im-
plementations, please see ?? in the supplementary material.

4.1 Main Results

Unified multimodal sensor generation. As shown in Table 1,
we compare our model with specialized single-modality genera-
tion methods. Although our method does not achieve state-of-the-
art (SOTA) performance for every metric, OmniGen, as a unified
multimodal framework, achieves comparable or even superior qual-
ity in camera and LiDAR sensor generation. Specifically, Omni-
Gen achieves 21.01 FID and 20.41 mAP for generated camera data,
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Table 2: Generalizable multimodal reconstruction results.

‘ Train set ‘ Val set
Camera Recon

| PSNRT  SSIM? | PSNRt  SSIM?
SelfOcc [18] 20.67 0.556 - -
UniPAD [16] 19.44 0.497 - -
DistillNeRF [45] |  28.01 0.872 - -
UAE-C 30.29 0.908 30.13 0.903
UAE-LC 30.45 0.913 30.21 0.909
LiDAR Recon ‘ Train set ‘ Val set

‘ Chamfer] F-scoref ‘ Chamfer| F-scoref
UAE-L 0.869 0.734 1.068 0.713
UAE-LC 0.634 0.763 0.793 0.742

Table 3: Generation data augmentation for perception.

Method | Modality | mAP? NDS?
BEVFormer [24] C 25.2 35.4

+ OmniGen C 27.1(+1.9) 37.1(+1.7)
BEVFusion [29] LC 68.5 71.4

+ OmniGen LC 70.1 (+1.6) 72.8 (+1.4)

Table 4: Generation data augmentation for planning.

Method ‘ Modality ‘ Avg. L2 (m) | ‘ Avg. Collision (%) |

UniAD [16] C 1.03 0.31
+ OmniGen C 0.99 (+3.9%) 0.29 (+6.4%)

FusionAD [60]| LC 0.81 0.12
+ OmniGen LC 0.77 (+4.9%) 0.11 (+8.3%)

and 2.94 x 107* MMD and 0.105 JSD for LiDAR data. Furthermore,
thanks to our independent BEV encoders for each modality, our
UAE (i.e, UAE-LC) also supports single-modality operation, ie.,
UAE-C and UAE-L. Experimental results show that multimodal
generation consistently outperforms our single-modality genera-
tion, further demonstrating the effectiveness of our unified model.
We hope our framework can inspire the community and foster col-
laborative efforts to improve the results to SOTA together.

Generalizable LiDAR-camera reconstruction. As shown in Ta-
ble 2, our UAE achieves state-of-the-art performance in generaliz-
able LiDAR-camera multimodal reconstruction. Specifically, UAE
significantly outperforms the previous best generalizable single-
camera modality method, DistillNeRF [45], with a notable improve-
ment (i.e, +2.44 PSNR). Moreover, our UAE-L and UAE-LC first
achieves generalizable LiDAR reconstruction with the chamfer dis-
tance of 0.869 and 0.634, respectively. Additionally, multimodal
reconstruction also surpasses single-modality reconstruction, fur-
ther highlighting the advantages of our unified framework.

Downstream tasks. As shown in Table 3 and Table 4, we uti-
lize our OmniGen to produce augmented data with corresponding
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conditions, aiming to enhance downstream tasks. As illustrated by
the improvements, our OmniGen effectively generates multimodal
sensor data, facilitating enhanced perception and planning in au-
tonomous driving. Specifically, OmniGen boosts multimodal BEV-
Fusion with +1.6 mAP and FusionAD with +4.9% L2 metric.

4.2 Qualitative Results

shift: z-1m and x+0.2m

Camera extrinsic

TR AR sy
A - [y, | ;
R =, x+im | | [L0— —
o A N H s N
{ L

' LiDAR extrinsic

LiDAR intrinsic

(b) Sensor extrinsic and intrinsic controllability

Figure 4: Qualitative results for multimodal sensor genera-
tion. H-res denotes the horizontal resolution.

Multi-modal and multi-view consistency. As shown in Fig. 4
(a), our OmniGen exhibits excellent multi-modal and multi-view
consistency, as highlighted by the blue boxes and pink arrows. This
demonstrates the effectiveness of our unified method, which lever-
ages unified BEV features as a global scene constraint.

Sensor intrinsic and extrinsic controllability. As shown in Fig. 4
(b), UAE enables the flexible adjustment of sensor parameters, in-
cluding both intrinsic and extrinsic settings, during the rendering
process, which showcases the superior design of our framework.

4.3 Ablation Study

Ablations on UAE. As shown in Table 5 and Fig. 5, we investigate
various designs of the render decoder in UAE. For A1-MLP, we in-
troduce additional MLPs to further extract voxel features; however,
this does not improve the results and instead increases the number
of parameters. For A2-w/o-decoder, we use additional MLPs to di-
rectly output RGB values, removing the feature decoder altogether.
This leads to a significant performance drop, highlighting the im-
portance of the feature decoder. Additionally, we ablate different
representations for rendering, including NeRF and SDF, both of
which produce comparable results. The SDF performs slightly bet-
ter and is therefore adopted in the final design.
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Table 5: Ablation on UAE.

Module ‘ PSNRT  SSIMt  LPIPS|

Architecture

A1-MLP Fig5 (b) 29.42 0.878 0.049

A2-w/o-decoder Figs5 (c) 26.61 0.802 0.212

UAE Fig5 (a) 30.21 0.909 0.033

Render Representation

NeRF Figs (d) 29.97 0.891 0.069

SDF Fig5 (a) 30.21 0.909 0.033
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5 Discussion

In this section, we aim to provide valuable insights for the unified
multimodal generation field. More discussions about Future Work
of Multimodal Generation, Limitations and Unsuccessful Attempts,
please see ?? in the supplementary material.

5.1 Mutimodal Sensor Generation Solutions

During the early design phase of OmniGen, we explored various al-
ternative frameworks. Although these ideas were not pursued fur-
ther due to certain limitations, e.g., not unified, we present them
here to share potential ideas for future research. As shown in Fig. 6,
these frameworks build upon the camera generation pipeline as the
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primary branch, leveraging its superior camera generation perfor-
mance, while incorporating the LIDAR modality in different ways.

a) A dual-branch design, where each modality operates in its
own feature space and cross-modal alignment is enforced by at-
tention mechanisms. Due to the inherent differences in repre-
sentation spaces, achieving alignment proves challenging, which
leads to limited performance potential for the overall framework.
b) Some studies [22, 32, 54] use semantic occupancy as an in-
termediate representation to improve generation quality. Based
on this approach, we explored adding an occupancy-to-LiDAR
branch. However, this results in a complex framework with mul-
tiple branches, and its performance is restricted by limitations in
the occupancy generation process, such as resolution.
c) Expanding upon the existing camera branch, we incorporated
a reconstruction stage using NeRF or 3DGS to reconstruct the
scene, followed by rendering LiDAR data through methods such
s [7, 43]. However, this framework suffers from inefficiencies
due to its multi-stage nature, particularly the time-consuming
and labor-intensive reconstruction process.
d) Building on the existing camera branch, we integrated it with
per-view depth map generation and then merged the generated
depth maps into a mesh using methods such as NKSR [17]. Sub-
sequently, LiDAR data can be synthesized through ray-casting.
However, this framework is limited by its multi-stage complex-
ity and the challenges of generating precise depth.

6 Conclusion

In this paper, we introduced OmniGen, a unified multimodal sen-
sor generation framework for autonomous driving that enables
the unified generation of aligned LiDAR and camera data. Our ap-
proach addresses the limitations of existing single-modality gen-
eration methods by establishing a unified BEV-based representa-
tion space, proposing UAE, a generalizable multimodal reconstruc-
tion for multimodal autoencoder, and incorporating a ControlNet-
Transformer model to synthesize multimodal sensor data under
flexible conditions. Extensive experiments demonstrate that our
framework not only achieves state-of-the-art performance in mul-
timodal reconstruction but also generates LIDAR and camera data
with cross-modality alignment and flexible sensor control. These
advancements enhance the quality and usability of synthetic sen-
sor data, further benefiting downstream tasks such as perception
and planning in autonomous driving. Moreover, we provide valu-
able insights into the designs of the unified multimodal generation
framework, hoping to inspire future research into more efficient
multimodal generation.
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